Local Nikolskii Constants for a Special Class of Baskakov Operators

Heinz-Gerd Lehnhoff*

Institut für Mechanik, Technische Hochschule Darmstadt, Hochschulstrasse 1, D-6100 Darmstadt, West Germany

Communicated by G. Meinardus

Received September 25, 1980

1. DEFINITIONS AND AUXILIARY RESULTS

DEFINITION 1.1. Let $(\Phi_n)_{n \in \mathbb{N}}$, $\Phi_n : [0, b] \to \mathbb{R}$ (b > 0) be a sequence of functions, having the following properties:

- (i) Φ_n is infinitely differentiable on [0, b];
- (ii) $\Phi_n(0) = 1$;
- (iii) Φ_n is completely monotone on [0, b], i.e., $(-1)^k \Phi_n^{(k)}(x) \ge 0$ for $x \in [0, b]$ and $k \in \mathbb{N}_0$;
 - (iv) there exists an integer c, such that

$$\Phi_n^{(k)}(x) = -n\Phi_{n-c}^{(k-1)}(x)$$

for $x \in [0, b]$, $k \in \mathbb{N}$, $n \in \mathbb{N}$, $n > \max(c, 0)$.

Then the sequence $(\Phi_n)_{n\in\mathbb{N}}$ generates two sequences of operators, namely,

$$T_n(f;x) := \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} \Phi_n^{(k)}(x) x^k f\left(\frac{k}{n}\right), \quad x \in [0,b], \ n \in \mathbb{N}, \ (1.1)$$

and

$$\tilde{T}_n(g;x) := \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} \boldsymbol{\Phi}_n^{(k)}(x) x^k \frac{1}{2} \left\{ g\left(\frac{k}{n}\right) + g\left(2x - \frac{k}{n}\right) \right\},$$

$$x \in [0, b], \ n \in \mathbb{N}. \quad (1.2)$$

Remarks. (1) It can be shown that operators (1.1) specialize some well-known operators as those of Baskakov [1] and Schurer [9].

^{*} This paper is part of the author's dissertation.

(2) A remark of Schurer [9; p. 23] says that the function can be continued analytically to a function Θ_n , which is holomorphic in the closed disk $B := \{z \in \mathbb{C} : |z-b| \le b\}$. A complete proof of this fact is given in [2: p. 47 ff.].

Let now $X \subset \mathbb{R}$ be an interval, then $C_M(X)$ denotes the space of all functions $f \in C(X)$ such that

$$|f(t)| \le A(f) + B(f) |t|^{m(f)}$$

for some constants A(f), $B(f) \in \mathbb{R}^+$ and $m(f) \in \mathbb{N}_0$.

THEOREM 1.2. (a) $(T_n)_{n\in\mathbb{N}}$ is a sequence of linear positive operators from $C_M[0,\infty)$ in C[0,b] with the property

$$\lim_{n \to \infty} T_n(f; x) = f(x), \qquad f \in C_M[0, \infty), \ x \in [0, b].$$

(b) $(\tilde{T}_n)_{n\in\mathbb{N}}$ is a sequence of linear positive operators from $C_M(\mathbb{R})$ in C[0,b] with the property

$$\lim_{n\to\infty} \tilde{T}_n(g;x) = g(x), \qquad g \in C_M(\mathbb{R}), \ x \in [0,b].$$

Proof. Part (a) follows immediately from a theorem of Rathore (cf. [6; pp. 35-39]). Moreover (b) follows from (a) and the fact that

$$\tilde{T}_n(g;x) = \frac{1}{2} \{ T_n(g;x) + T_n(g(2x-t);x) \}, \quad x \in [0,b].$$

For $n \in \mathbb{N}$, $s \in \mathbb{N}_0$ and $x \in [0, b]$ we write

$$T_n((t-x)^s; x) = \frac{1}{n^s} M_{n,s}(x),$$
 (1.3)

where

$$M_{n,s}(x) := \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} \, \Phi_n^{(k)}(x) \, x^k (k - nx)^s. \tag{1.4}$$

Then the following result of Sikkema [10; Satz 4; p. 236] is valid.

LEMMA 1.3. For $m \in \mathbb{N}_0$, $n \in \mathbb{N}$, $n > \max(c, 0)$ and $x \in [0, b]$ we have

$$M_{n,m+1}(x) = nx \sum_{s=0}^{m} {m \choose s} (1 - cx)^{m-s} M_{n-c,s}(x) - nx M_{n,m}(x).$$
 (1.5)

From the recurrence relation (1.5) we obtain

LEMMA 1.4. For $m \in \mathbb{N}$, $n \in \mathbb{N}$, $n > \max(c, 0)$ and $x \in [0, b]$ the formula

$$M_{n,m}(x) = \sum_{j=0}^{\lfloor m/2 \rfloor} \Psi_{m,j}(x) n^j$$
 (1.6)

holds, where $\Psi_{m,j}$ $(0 \le j \le \lfloor m/2 \rfloor)$ is an algebraic polynomial of degree m in x. Moreover there exists a positive constant C(m,b) such that

$$|M_{n,m}(x)| \leq C(m,b) n^{\lfloor m/2 \rfloor}$$

and

$$|T_n((t-x)^m;x)| \le C(m,b) n^{-\lceil (m+1)/2 \rceil}$$

hold uniformly for all $x \in [0, b]$ and $n > \max(mc, 0)$.

Proof. To prove Lemma 1.4 we have only to show that formula (1.6) is valid. This will be done by means of mathematical induction. According to Baskakov [1; p. 249 f.] we have

$$M_{n,0}(x) = T_n(1; x) = 1.$$

Now let us assume that for $0 \le r < m$

$$M_{n,r}(x) = \sum_{j=0}^{\lfloor r/2 \rfloor} \Psi_{r,j}(x) n^j,$$

where $\Psi_{r,j}$ $(0 \le j \le \lfloor r/2 \rfloor)$ is an algebraic polynomial of degree r in x. By Lemma 1.3 we obtain

$$M_{n,m}(x) = nx \sum_{s=0}^{m-1} {m-1 \choose s} (1-cx)^{m-1-s} M_{n-c,s}(x) - nx M_{n,m-1}(x)$$

$$= nx \sum_{s=0}^{m-2} {m-1 \choose s} (1-cx)^{m-1-s} M_{n-c,s}(x)$$

$$+ nx [M_{n-c,m-1}(x) + M_{n,m-1}(x)]$$

$$= \sum_{s=0}^{m-2} \sum_{j=0}^{\lfloor s/2 \rfloor} {m-1 \choose s} \Psi_{s,j}(x) (1-cx)^{m-1-s} nx (n-c)^{j}$$

$$+ \sum_{j=0}^{\lfloor (m-1)/2 \rfloor} \sum_{k=0}^{j-1} {j \choose k} (-c)^{j-k} \Psi_{m-1,j}(x) n^{k}.$$

$$(1.7)$$

We can see from (1.7) that the degree in n of $M_{n,m}(x)$ is equal to $\lfloor m/2 \rfloor$. Moreover we know that $\Psi_{s,j}$ is an algebraic polynomial of degree s in x for all $0 \le j \le \lfloor s/2 \rfloor$ ($0 \le s \le m-1$). Thus we can write

$$M_{n,m}(x) = \sum_{j=0}^{\lfloor m/2 \rfloor} \Psi_{m,j}(x) n^j$$

with suitable polynomials $\Psi_{m,i}$ of degree m in x.

THEOREM 1.5 (Conclusions from Definition 1.1).

- (a) The case $c \in \mathbb{Z}$, c > 0. (i) Suppose, there is a sequence $(\Phi_n)_{n \in \mathbb{N}}$, which satisfies the conditions of Definition 1.1 on an interval [0,b] with c > 0, then it must be $0 \le b \le 1/c$.
- (ii) For each sequence $(\Phi_n)_{n\in\mathbb{N}}$, which satisfies the conditions of Definition 1.1 on an interval [0,b] with c>0, we have

$$\Phi_{cm+j}(x) = (1-cx)^{m+j/c} + \frac{(-1)^m}{(m-1)!} \prod_{k=1}^m (ck+j) \int_0^x (x-t)^{m-1} \{ \Phi_j(t) - (1-ct)^{j/c} \} dt,
j = 1, 2, ..., c; m \in \mathbb{N}; x \in [0, b]. (1.8)$$

- (iii) The sequence $\Phi_n(x) = (1-x)^n$ satisfies all conditions of Definition 1.1 with c=1 on the interval [0,1]. However, for c>0 the sequence $\Phi_n(x) = (1-cx)^{n/c}$ does not satisfy all conditions of Definition 1.1 (cf. a remark of Schurer in [9; p. 66]).
- (b) The case c=0. In case c=0 the conditions of Definition 1.1 are only satisfied for the sequence $\Phi_n(x)=\exp(-nx)$, namely, on any interval [0,b] with b>0. Hence the corresponding operators T_n and \tilde{T}_n are defined for all $x \ge 0$.
- (c) The case $c \in \mathbb{Z}$, c < 0. Suppose, there is a sequence $(\Phi_n)_{n \in \mathbb{N}}$, which satisfies the conditions of Definition 1.1 on an interval [0,b] with c < 0, then we have $\Phi_n(x) = (1-cx)^{n/c}$. On the other hand, the sequence $\Phi_n(x) = (1-cx)^{n/c}$ satisfies the conditions of Definition 1.1 on any interval [0,b] with b > 0. Thus the corresponding operators T_n and \tilde{T}_n are defined for all $x \ge 0$.
 - *Proof.* (a) (i) From the positivity of the operator T_n we get

$$T_n((t-b)^2; b) = \frac{b(1-cb)}{n} \geqslant 0,$$

i.e., $b(1-cb) \ge 0$ and thus $0 \le b \le 1/c$.

- (ii) Formula (1.8) follows from property (iv) of Definition 1.1, cf. Schurer [9; p. 63 f.].
- (b) The initial value problem $\Phi_n(x) = -n\Phi_n(x)$, $\Phi_n(0) = 1$ has a unique solution, which is given by $\Phi_n(x) = \exp(-nx)$.
- (c) As we have seen, the function Φ_n can be continued analytically to a function Θ_n , which is holomorphic on $|z-b| \le b$. Thus, expanding Θ_n in a Taylor series, we have for a suitable R > 0

$$\Theta_n(z) = \sum_{k=0}^{\infty} \frac{\Phi_n^{(k)}(0)}{k!} z^k, \qquad |z| < R.$$

Moreover we obtain from property (iv) of Definition 1.1

$$\Phi_n^{(k)}(x) = -n\Phi_{n-c}^{(k-1)}(x) = \dots = (-1)^k \prod_{i=0}^{k-1} (n-ic) \Phi_{n-kc}(x),$$

and hence

$$\Phi_n^{(k)}(0) = (-1)^k \prod_{i=0}^{k-1} (n-ic).$$

Therefore

$$\Theta_n(z) = \sum_{k=0}^{\infty} \frac{(-1)^k n(n-c) \cdots (n-(k-1)c)}{k!} z^k$$

= $(1-cz)^{n/c}$, $|z| < R$

and thus by means of analytic continuation

$$\Theta_n(z) = (1 - cz)^{n/c}$$
 for $|z - b| \le b$.

2. An Asymptotic Estimation for $T_n(|t-x|^\beta;x)$

In this section we will show that the asymptotic estimation

$$T_n(|t-x|^{\beta};x) \cong \frac{\Gamma((\beta+1)/2)}{\sqrt{\pi}} \left[\frac{2x(1-cx)}{n}\right]^{\beta/2}, \qquad n \to \infty$$
 (2.1)

holds for all $\beta > 0$ and all x in a suitable interval.

Now, using the result of [3: Theorem 3.2] and Lemma 1.4, we obtain

THEOREM 2.1. Let $(\Phi_n)_{n\in\mathbb{N}}$ be a sequence of functions, which satisfies the conditions of Definition 1.1 on an interval [0,b]. Suppose, for a real α , $\alpha < \frac{1}{2}$ and all $x \in [0,b]$ the asymptotic relation

$$\frac{(-1)^k}{k!} \Phi_n^{(k)}(x) x^k$$

$$\cong \frac{1}{\sqrt{n}} \frac{1}{\sqrt{2\pi x (1 - cx)}} \exp\left[\frac{-n}{2x (1 - cx)} \left(\frac{k}{n} - x\right)^2\right],$$

 $n \to \infty$, holds uniformly for all $k \in A_n(x) := \{k \in \mathbb{Z} : |k/n - x| < n^{-\alpha}\}$, then for all $\beta > 0$ and all $x \in [0, b]$ the estimation

$$T_n(|t-x|^{\beta};x) \cong \frac{\Gamma((\beta+1)/2)}{\sqrt{\pi}} \left[\frac{2x(1-cx)}{n} \right]^{\beta/2}, \qquad n \to \infty$$

is valid.

Remark. For the Bernstein- and Szász-Mirakjan-operators the result of Theorem 2.1 was already probed by Rathore in [5].

THEOREM 2.2. (a) Let $(\Phi_n)_{n \in \mathbb{N}}$ be a sequence of functions, which satisfies the conditions of Definition 1.1 on an interval [0, b] with c > 0, then estimation (2.1) holds for all $0 < x < \min(b, 1/(2c))$ and all $\beta > 0$.

- (b) In case of Bernstein-operators (i.e., $\Phi_n(x) = (1 cx)^n$) (2.1) is valid for all $\beta > 0$ and all 0 < x < 1.
- (c) We have learned from Theorem 1.5 that in case $c \le 0$ the conditions of Definition 1.1 are only satisfied by the sequences $\Phi_n(x) = \exp(-nx)$ (c=0) and $\Phi_n(x) = (1-cx)^{n/c}$ (c<0), namely, on any interval [0,b] (b>0). Then (2.1) holds for all x>0 and all $\beta>0$.

Proof. (a) Step I. For $0 < x < \min(b, 1/(2c))$ the asymptotic relation

$$\frac{(-1)^k}{k!} \Phi_n^{(k)}(x) x^k \cong \frac{n(n-c)\cdots(n-(k-1)c)}{k!} (1-cx)^{n/c-k} x^k, \quad (2.2)$$

 $n \to \infty$, holds uniformly for all $k \in A_n(x) := \{k \in \mathbb{Z} : |k/n - x| < n^{-\alpha}\}$, where $\frac{1}{3} < \alpha < \frac{1}{2}$.

Proof of Step I. Suppose, we have $n \ge n_0(x) \ge [2c/(1-cx)]^{1/\alpha}$. Hence, putting n = cm + j $(m \in \mathbb{N}; j = 1,...,c)$, we get

$$\left| \frac{k}{n} - x \right| < n^{-\alpha} \Rightarrow k < \frac{n}{2c} \leqslant \frac{m+1}{2} \leqslant m-1.$$

Now for $0 \le k \le m-1$ formula (1.8) of Theorem 1.5 yields

$$\frac{(-1)^{k}}{k!} \Phi_{cm+j}^{(k)}(x) x^{k}
= \frac{(j+cm)(j+c(m-1))\cdots(j+c(m-k+1))}{k!} (1-cx)^{(j+c(m-k))/k} x^{k}
+ \frac{(-1)^{m+k}}{(m-1-k)!} \prod_{i=1}^{m} (ci+j) x^{k} \int_{0}^{x} (x-t)^{m-1-k} \{\Phi_{j}(t)-(1-ct)^{j+c}\} dt.$$

Moreover

$$\Gamma_{m}(x) := \frac{\prod_{i=1}^{m-k} (ci+j)}{(m-1-k)! (1-cx)^{m-k+j/c}} \\
\times \int_{0}^{\infty} (x-t)^{m-1-k} |\Phi_{j}(t) - (1-ct)^{j/c}| dt \\
\leq D \frac{\prod_{i=1}^{m-k} (ci+j)x^{m-k}}{(m-1-k)! (1-cx)^{m-k+j/c}} \\
\leq D(m-k+j/c) \frac{(cx)^{m-k}}{(1-cx)^{m-k+j/c}} \\
= D(m-k+j/c)(cx)^{-j/c} \left[\frac{cx}{1-cx}\right]^{(cm+j)/c-k} \\
\leq D(cx)^{-j/c}(m+j/c) \\$$

uniformly for all $k \in A_n(x)$, because

$$0 < x < \min(b, 1/(2c)) \Rightarrow 0 < \frac{cx}{1 - cx} < 1.$$

From (2.3) and (2.4) we receive (2.2).

Step II. For $0 < x < \min(b, 1/(2c))$ the asymptotic relation

$$\frac{(-1)^{k}}{k!} \Phi_{n}^{(k)}(x) x^{k} \cong \frac{1}{\sqrt{2\pi x (1 - cx) n}} \exp\left[\frac{-n}{2x (1 - cx)} \left(\frac{k}{n} - x\right)^{2}\right].$$

$$n \to \infty. \quad (2.5)$$

holds uniformly for all $k \in A_n(x)$, where $\frac{1}{3} < \alpha < \frac{1}{2}$.

Proof of Step II. Using Stirling formula we obtain from (2.2)

$$\frac{(-1)^{k}}{k!} \Phi_{n}^{(k)}(x) x^{k} \cong \frac{n(n-c) \cdots (n-(k-1)c)}{k!} (1-cx)^{n/c-k} x^{k}$$

$$= \frac{\Gamma(n/c+1)}{\Gamma(n/c-(k-1))k!} (1-cx)^{n/c-k} x^{k}$$

$$\cong \frac{(n/c+1)^{n/c+1/2} (1-cx)^{n/c-k} x^{k}}{k^{k+1/2} (n/c-(k-1))^{n/c-k+1/2} \sqrt{2\pi}}$$

$$= \frac{1}{\sqrt{2\pi}} \sqrt{\frac{n+c}{k(n-kc+c)}} \left[\frac{(n+c)(1-cx)}{n+c-kc} \right]^{(n-kc)/c} \left[\frac{x(n+c)}{k} \right]^{k}$$

$$\cong \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{x(1-cx)}} \left[\frac{n(1-cx)}{n-kc} \right]^{(n-kc)/c} \left[\frac{nx}{k} \right]^{k}, \quad n \to \infty, \quad (2.6)$$

uniformly for $k \in A_n(x)$.

Now

$$-\log W_n(x) = (n/c - k) \log \left[\frac{n - kc}{n(1 - cx)} \right] + k \log \left[\frac{k}{nx} \right]$$

$$= \frac{n}{c} (1 - cx) \left[1 - \frac{c}{1 - cx} \left(\frac{k}{n} - x \right) \right] \log \left[1 - \frac{c}{1 - cx} \left(\frac{k}{n} - x \right) \right]$$

$$+ nx \left[1 + \frac{1}{x} \left(\frac{k}{n} - x \right) \right] \log \left[1 + \frac{1}{x} \left(\frac{k}{n} - x \right) \right]. \tag{2.7}$$

By Taylor formula for |u| < 1

$$\log(1+u) = u - \frac{1}{2}u^2 + \frac{1}{3}\frac{u^3}{(1+\Theta u)^3} = u - \frac{1}{2}u^2(1+\varepsilon u),$$

 $0 < \Theta < 1$, where ε remains bounded as $u \to 0$. Substituting in (2.7)

$$-\log W_{n}(x) = \frac{n}{c} (1 - cx) \left[1 - \frac{c}{1 - cx} \left(\frac{k}{n} - x \right) \right]$$

$$\left[-\frac{c}{1 - cx} \left(\frac{k}{n} - x \right) - \frac{c^{2}}{2(1 - cx)^{2}} \left(\frac{k}{n} - x \right)^{2} - \frac{\varepsilon}{2} \frac{c^{3}}{(1 - cx)^{3}} \left(\frac{k}{n} - x \right)^{3} \right]$$

$$+ nx \left[1 + \frac{1}{x} \left(\frac{k}{n} - x \right) \right]$$

$$\times \left[\frac{1}{x} \left(\frac{k}{n} - x \right) - \frac{1}{2x^{2}} \left(\frac{k}{n} - x \right)^{2} - \frac{\varepsilon}{2x^{3}} \left(\frac{k}{n} - x \right)^{3} \right]$$

$$= \frac{n}{2x(1 - cx)} \left(\frac{k}{n} - x \right)^{2} + O_{x}(n^{1 - 3\alpha}), \qquad n \to \infty,$$

uniformly for $k \in A_n(x)$. Therefore we have uniformly for all $k \in A_n(x)$

$$W_n(x) = \exp\left[\frac{-n}{2x(1-cx)} \left(\frac{k}{n} - x\right)^2\right], \qquad n \to \infty.$$
 (2.8)

Relation (2.5) now follows by (2.6) and (2.8). \bullet

An application of Theorem 2.1 completes the proof.

- (b) Part (b) of Theorem 2.2 was already proved by Rathore [5: p. 53 f.] (cf. Lorentz [4; pp. 15–17]).
- (c) For the sequence $\Phi_n(x) = \exp(-nx)$ the result of part (c) was proved by Rathore [5; p. 40 f.].

For the sequence $\Phi_n(x) = (1 - cx)^{n/c}$ (c < 0) the result of part (c) can be proved in the same way as Step II in the proof of part (a).

Remark. Moreover, by means of Lemma 1.4 we can prove the following completion of Theorem 2.2:

Let $(\Phi_n)_{n\in\mathbb{N}}$ be a sequence of functions, which satisfies the conditions of Definition 1.1 on an interval [0,b] with $c\in\mathbb{Z}$, then the asymptotic extension

$$T_n((t-x)^{2m}; x) \cong \frac{1 \cdot 3 \cdot 5 \cdots (2m-1)(x(1-cx))}{n^m}$$
$$= \frac{\Gamma((2m+1)/2)}{\sqrt{\pi}} \left[\frac{2x(1-cx)}{n} \right]^m$$

holds for all $x \in [0, b]$ and all $m \in \mathbb{N}$

3. THE LOCAL NIKOLSKII CONSTANTS

Let X, \hat{X} be two subsets of \mathbb{R} with $\hat{X} \subset X$. For a sequence $(L_n)_{n \in \mathbb{N}}$ of operators, defined on the domain $C_M(X)$ into the domain $C(\hat{X})$, the error in approximating a subclass $A \subset C_M(X)$ by L_n , at a given point x is defined to be

$$\Delta(L_n; A; x) := \sup_{f \in A} |L_n(f; x) - f(x)|. \tag{3.1}$$

If there exists a numerical sequence $\Psi_n(L;A) \to 0$ as $n \to \infty$, such that

$$\Delta(L_n; A; x) = C(L; A; x) \, \Psi_n(L; A) + o_x(\Psi_n(L; A)), \quad n \to \infty. \quad (3.2)$$

where C(L; A; x) is a positive number, then C(L; A; x) is called the local

Nikolskii constant corresponding to the order $\Psi_n(L; A)$ of approximation of the class A, at the point x, by the operator L_n .

In this section A is always one of the following three classes

$$\begin{split} \operatorname{Lip}(C(X);\alpha;1) &:= \{ f \in C(X) \colon |f(x+h) - f(x)| \leqslant |h|^{\alpha}, \\ \forall x, x+h \in X \}, \qquad 0 < \alpha \leqslant 1 \, ; \\ \operatorname{Lip}^*(C(X);\alpha;2) &:= \{ f \in C(X) \colon |f(x+h) - 2f(x) + f(x-h)| \\ &\leqslant 2 \mid h\mid^{\alpha}, \forall x, x \pm h \in X \}, \qquad 0 < \alpha \leqslant 2 \, ; \\ W^{(1)}(C(X);\alpha;1) &:= \{ f \in C^1(X) \colon f' \in \operatorname{Lip}(C(X);\alpha;1) \}, \qquad 0 < \alpha \leqslant 1 \, . \end{split}$$

Moreover we want to study the approximation of higher order. Thus we consider the quantity

$$\Delta(L_n; \alpha; q; x) := \sup_{f \in W^{(q)}(C(X); \alpha; 1)} \left| L_n(f(t) - \sum_{k=0}^{q} \frac{f^{(k)}(x)}{k!} (t - x)^k; x) \right|$$

with

$$W^{(q)}(C(X); \alpha; 1) := \{ f \in C^{(q)}(X) : f^{(q)} \in \text{Lip}(C(X); \alpha; 1) \},$$

$$0 < \alpha \leq 1, q \in \mathbb{N}.$$

Now, using estimation (2.1) and the results of [3; Theorems 2.3–2.4], we get (a) for the sequence $(T_n)_{n \in \mathbb{N}}$

	Order of approximation	Local Nikolskii constant
$\Delta(T_n; \operatorname{Lip}(C 0, \infty); \alpha, 1); x),$ $0 < \alpha \leq 1$	$n^{-\alpha/2}$	$\frac{\Gamma((\alpha+1)/2)}{\sqrt{\pi}} (2x(1-cx))^{\alpha/2}$
$A(T_n; \operatorname{Lip}^*(C[0, \infty); \alpha; 2); x),$ $0 < \alpha \leq 2$?	?
$A(T_n; W^{(1)}(C[0, \infty); \alpha; 1); x),$ $0 < \alpha < 1$	$n^{-(\alpha+1)/2}$?
$\Delta(T_n; W^{(1)}(C[0,\infty); 1; 1); x),$	n^{-1}	$\frac{1}{2}x(1-cx)$
$A(T_n; \alpha; q; x),$ $q \text{ even, } 0 < \alpha \leqslant 1$	$n^{-(\alpha+q)/2}$	$\frac{\Gamma((\alpha+q+1)/2)}{(1+\alpha)_q\sqrt{\pi}}\left(2x(1-cx)\right)^{(\alpha+q)/2}$
$\Delta(T_n; \alpha; q; x)$, $q \text{ odd}$, $0 < \alpha < 1$	$n^{-(\alpha+q)/2}$?
$\Delta(T_n; 1; q; x),$ q odd	$n^{-(q+1)/2}$	$\frac{\Gamma((q+2)/2)}{(q+1)!\sqrt{\pi}} (2x(1-cx))^{(q+1)/2}$

(b) for the sequence $(\tilde{T}_n)_{n \in \mathbb{N}}$

	Order of approximation	Local Nikolskii constant
$\Delta(\widetilde{T}_n; \operatorname{Lip}(C(\mathbb{F}^n); \alpha; 1); x),$ $0 < \alpha \leqslant 1$	$n^{-\alpha/2}$	$\frac{F((\alpha+1)/2)}{\sqrt{\pi}}(2x(1-cx))^{\alpha}$
$\Delta(\tilde{T}_n; \operatorname{Lip}^*(C(\mathbb{R}); \alpha; 2); x),$ $0 < \alpha \leqslant 2$	$n^{-\alpha/2}$	$\frac{F((\alpha+1)/2)}{\sqrt{\pi}} (2x(1-cx))^{\alpha/2}$
$\Delta(\widetilde{T}_n; W^{(1)}(C(\top); \alpha; 1); x),$ $0 < \alpha \leqslant 1$	$n^{-(n+1)/2}$	$\frac{2^{n-1}\Gamma((\alpha+2)/2)}{\sqrt{\pi}} (2x(1-ex))^{(n+1)}$
$A(\widetilde{T}_n; \alpha; q; x),$ $q \text{ even, } 0 < \alpha \leqslant 1$	$n^{-(\alpha+q)/2}$	$\frac{T((\alpha+q+1)/2)}{(1+\alpha)_q\sqrt{\pi}}(2x(1-cx))^{(\alpha+q)/2}$
$\Delta(\widetilde{T}_n; \alpha; q; x),$ $q \text{ odd}, 0 < \alpha \leqslant 1$	$n^{-(\alpha+q)/2}$	$\frac{2^{n-1}F((\alpha+q+1)/2)}{(1+\alpha)_q\sqrt{\pi}}(2x(1-cx))^{(\alpha-q)/2}$

where $(1 + a)_q := \prod_{k=1}^{q} (a + k)$.

Remark. From Theorem 2.2 we have learned that the above results are valid

- (a) for $0 < x < \min(b, 1/(2c))$, if the sequence $(\Phi_n)_{n \in \mathbb{N}}$ satisfies all conditions of Definition 1.1 on an interval [0, b] with c > 0, (in particular for 0 < x < 1, if c = 1, $\Phi_n(x) = (1 x)^n$);
- (b) for all x > 0, if $\Phi_n(x) = \exp(-nx)$ (c = 0) or $\Phi_n(x) = (1 cx)^{n+c}$ (c < 0).

REFERENCES

- 1. V. A. BASKAKOV, An example of linear positive operators in the space of continuous functions, *Dokl. Akad. Nauk SSSR* 113 (1957), 249–251. [Russian]
- 2. H. G. LEHNHOFF, "Lokale Approximationsmaße und Nikolskii Konstanten für positive lineare Operatoren," Dissertation, Universität Dortmund, 1979.
- 3. H.-G. LEHNHOFF, Local Nikolskii constants for positive linear operators, *J. Approx. Theory*, in press.
- 4. G. G. LORENTZ, "Bernstein Polynomials," Univ. of Toronto Press. Toronto, 1953.
- R. K. S. RATHORE, "Linear Combinations of Linear Positive Operators and Generating Relations in Special Functions," Dissertation, Indian Institute of Technology. Delhi. 1973.
- R. K. S. RATHORE, "Approximation of Unbounded Functions with Linear Positive Operators," Doctoral thesis, Technische Hogeschool Delft, 1974.
- R. K. S. RATHORE, Lipschitz-Nikolskii constants for the Gamma operators of Müller. Math. Z. 141 (1975), 193–198.

- 8. R. K. S. RATHORE, Lipschitz-Nikolskii constants and asymptotic simultaneous approximation of the M_n -operators, Aequationes Math. 18 (1978). 206-217.
- 9. F. SCHURER, "On Linear Positive Operators in Approximation Theory," Doctoral thesis. Technische Hogeschool Delft. 1965.
- P. C. SIKKEMA, Über die Schurerschen linearen Operatoren I, II, *Indag. Math.* 37 (1975), 230–242, 243–253.