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[. DEFINITIONS AND AUXILIARY RESULTS

DeriniTioN 11 Let (@), @, [0,6] - (b > 0) be a sequence of
functions, having the following properties:
(i) @, is infinitely differentiable on [0, b|;
(i) @,0)=1:
(iii) @, is completely monotone on |0, 5|, i.e., (—1)*@¥(x) >0 for
XE |0, b] and k € N,;

(iv) there exists an integer ¢, such that
@0 (x) = —n® N (x)
for x € |0, b], k€N, n € N, n > max(c, 0).

Then the sequence (@), ., generates two sequences of operators, namely,

¥4 1Yk
T,(fix):=) (kl,) 4"""’(X)xkf(£), x€10,b], n€N, (1.1)
k-0 : 1
and
- (=D 1| [k kyj
. — N\ (k) k= e —_——!

XE[0,b], nEN. (1.2)

Remarks. (1) It can be shown that operators (1.1) specialize some well-
known operators as those of Baskakov |1] and Schurer |9].
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(2) A remark of Schurer |9; p.23] says that the function can be
continued analytically to a function @,, which is holomorphic in the closed
disk B :={z € C: |z — b| < b}. A complete proof of this fact is given in [2:
p.- 47 ff.|.

Let now X < R be an interval, then C,,(X) denotes the space of all functions
/€ C(X) such that

£ <AS) + B(f) | ¢

for some constants A(f), B(f) € Rt and m(f) € N,.

THEOREM 1.2. (a) (T,),cn is a sequence of linear positive operators from
Cy|0, ) in C|0, b| with the property

lim T,(ix)=/(x),  J€Cyl0.c0). x€10.5]

(b) (T,),cn is a sequence of linear positive operators from C,,(R) in
C[0, b| with the property

lim T,(g:x)=g(x)  g€C,R). x€10,b].

Proof. Part (a) follows immediately from a theorem of Rathore (cf. [6:
pp. 35-39]). Moreover (b) follows from (a) and the fact that

T(g:x)=3T(g:x)+ T,(g2x—1:x)},  xe€[0.b]. 1§
For n€ N, s € N, and x € [0, b| we write

, 1
T ((t—x)x)= FM,M(X), (1.3)

where

‘Mn.s(x) = S (*l)k

X DP(x) x*(k — nx)*. (1.4)
=0 .

>

Then the following result of Sikkema [10; Satz 4; p. 236] is valid.

LEMMA 1.3. For m € Ny, n €N, n > max(c, 0) and x € |0, b| we have

M, () =nx N (T) (I—ex)"*M, _. (x)—nxM, .(x). (L5)

s=0
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From the recurrence relation (1.5) we obtain

LEMMA 14. Form €N, n € N, n > max(c,0) and x € |0, b] the formula
[m:2]

M, x)= N ¥, ()’ (1.6)

i

holds, where ¥, ; (0 < j< [m/2]) is an algebraic polynomial of degree m in
x. Moreover there exists a positive constant C(m, b) such that

M, () < Clm, byn'™?
and

)T”(([ —x)™ x) < Clm, b) g lom+ 02y

hold uniformly for all x € |0.b| and n > max(mc, 0).

Progf. To prove Lemma 1.4 we have only to show that formula (1.6} is
valid. This will be done by means of mathematical induction. According to
Baskakov [1: p. 249 f.] we have

Mn.()(x) = Tn(l;x,) =L

Now let us assume that for 0 < r < m

Iri2}
M, ()= N ¥, (on',

ji-0

where ¥, ; (0 < j< [r/2]) is an algebraic polynomial of degree r in x.
By Lemma 1.3 we obtain

metm— -
Mn,m(x):nx 2__ ( 5 )(1'\'C~Y)', SMn 7(-,\("() - nXMn,m ,(X)
§s=0
miz m— l m- 1y
—ne N (" e M,
s 0

+ nx[M,, com— |(x) - Mn,m l(x)l

m-2 [s/2]

— : ‘\_: (m‘ l) WS’J»(X)(I _cx)m 1 .\‘”x(n . t')j
§=0 j-0
lim-—1y:2} j-1 j )
+ :.: \_ (k ) (#C)jikwmv 1,‘;'("()”’3 (1.7)
)N

J=0 k=



LOCAL NIKOLSKII CONSTANTS, II 239

We can see from (1.7) that the degree in n of M, ,(x) is equal to [m/2].
Moreover we know that ¥ ; is an algebraic polynomial of degree s in x for
all 0 < j< [8/2] (0 s <m—1). Thus we can write

(m/2] A
Mn,m(x) = .\_, y/m.j(x)n}

J=0

with suitable polynomials ¥, ; of degree m in x. |

THEOREM 1.5 (Conclusions from Definition 1.1).

(a) The case c€ 7, ¢> 0. (i) Suppose, there is a sequence (D ,) e
which satisfies the conditions of Definition 1.1 on an interval |0, b| with
¢ > 0. then it must be 0 L b 1/e.

(it) For each sequence (P,),.\, Which satisfies the conditions of
Definition 1.1 on an interval [0, b| with ¢ > 0, we have

D, () = (1= cx)" ¢

cm+f
(_1)m m

+ m— D! k“l (ck + J) ‘Or (x — )" @) — (1 —ct)/’} b,

J=12..,c, mEN; x&0,b]. (1.8)

(ili) The sequence @,(x)=(1—x)" satisfies all conditions of
Definition 1.1 with ¢=1 on the interval [0, 1]|. However, for ¢ >0 the
sequence @ ,(x) = (1 — cx)"* does not satisfy all conditions of Definition 1.1
(¢f> a remark of Schurer in |9; p. 66]).

(b) The case c=0. In case ¢ =0 the conditions of Definition 1.1 are
only satisfied for the sequence ®,(x)=exp(—nx), namely, on any interval
[0, b] with b > 0. Hence the corresponding operators T, and T, are defined
Jor all x > 0.

(¢) Thecasece Z,c < 0. Suppose, there is a sequence (P,),c., which
satisfies the conditions of Definition 1.1 on an interval |0, b] with ¢ < 0, then
we have @,(x)= (1 —cx)" . On the other hand, the sequence ® (x)=
(1 — ex)" satisfies the conditions of Definition 1.1 on any interval |0, b]
with b > 0. Thus the corresponding operators T, and T, are defined for all
x20.

Progf. (a) (i) From the positivity of the operator T, we get
b(1 —cb
Ty =20

i.e.. b(1 —cb) > 0 and thus 0 < b < /e
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(ii) Formula (1.8) follows from property (iv) of Definition 1.1, cf.
Schurer |9;p. 63 f.].

(b) The initial value problem @ (x})=—n®,(x). ¢,(0)=1 has a
unique solution, which is given by @, (x) = exp(—nx).

(c) As we have seen, the function @, can be continued analytically to
a function @,,, which is holomorphic on |z — b| < b. Thus. expanding @, in a
Taylor series. we have for a suitable R > 0

3 PR0)
o A

0,(z)= Y 2 Jz| <R

Moreover we obtain from property (iv) of Definition 1.1

B (0) = n )= = (1 || (1 ie) @, ofx),

i—0

and hence
k-1
PO = (1) || (n—ic).

Therefore

0.(2) = & D =) - (n = (k= Do)
" = k!

=1 —cz)"", jz) <R

zl\

x>~

and thus by means of analytic continuation

0,(z)=(1—cz)"  for |z—b|<b 1

2. AN AsYMPTOTIC ESTIMATION FOR T (|t — x|%;x)

In this section we will show that the asymptotic estimation

_ T(B+ 1)) [2x(1 —ex)
\/; n

holds for all £ > 0 and all x in a suitable interval.
Now, using the result of |3: Theorem 3.2} and Lemma 1.4, we obtain

T

372
J . n—oo (2.1}
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THEOREM 2.1. Let (D)), be a sequence of functions, which satisfies
the conditions of Definition 1.1 on an interval |0, b]. Suppose, for a real a.
a < 3 and all x € |0, b] the asymptotic relation

Y
———( kl') PP (x) x*

5

o1 1 —n k
:*ﬁmexp[zxu—m (7"’?) J

n-» oo, holds uniformly for all k€ A, (x):=1k& Z: |k/n—x| <n *, then
Sor all B> 0 and all x € |0, b] the estimation

(B + 1)/2) [2x(1 —cx) 177
Va S RS

T,(t—xP x)=

is valid.

Remark. For the Bernstein- and Szasz—Mirakjan-operators the result of
Theorem 2.1 was already probed by Rathore in [5].

THEOREM 2.2. (a) Let (D,),cn be a sequence of functions, which
satisfies the conditions of Definition 1.1 on an interval |0, b] with ¢ > 0, then
estimation (2.1) holds for all 0 < x < min(b, 1/(2c)) and all § > 0.

(b) In case of Bernstein-operators (i.e., @, (x)=(1—cx)") (2.1) is
valid for all B> 0 and all 0 < x < 1.

(¢} We have learned from Theorem 1.5 that in case ¢<0 the
conditions of Definition 1.1 are only satisfied by the sequences ®,(x)=
exp(—nx) (c=0) and @,(x)= (1 —cx)"* (c <0), namely, on any interval
[0, b] (b > 0). Then (2.1} holds for all x > 0 and all § > 0.

Proof. (a) Stepl. For 0 < x < min(b, 1/(2¢)) the asymptotic relation

¥
Al k') PP (x)x* =~

nn—c)- (n—(k—1)c)

X (1 —cx)™ *x* (2.2)

n— o0, holds uniformly for all k € 4,(x) == (k€ 7: [k/n — x| <n~ "}, where

I o1
3La < 3.

Proof of Step 1. Suppose, we have #n > ny(x) 2> [2¢/(1 - cx)]"*. Hence,
putting n=cm+ j (im& N; j= l...., ¢}, we get

n m+1
<n "=k<—<

3 <m— 1
c

——X
n

A40/33:3.5
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Now for 0 < k < m — I formula (1.8) of Theorem 1.5 yields

(k)¢%,wn

_Urem(jtelm—1))-(j+em—k+1))

_,,.__(1 _CX)!,/H'lm A');VA.\‘/\

k!
+—‘—ﬂip[|((’l+.})’(,{‘ (\ m -t A{¢([) (1‘"(’[)H.}d[
(m—1-—k\k!, ’
(2.3)
Moreover
N ey
) = o T (1 — ey %
X [Y (x = )" "R ) - (1 —et) | dt
-0 _-—-"“<D\_
L1 fei + )"
sD (m—1 — k(1 —cxym k+ic
(\)m A
D(l’ﬂ‘/\%’j/(‘)(—vj*—imk

\ temtfye -k
=D(m — k + jle)(ex) ¢ l al J
I —ex

lln'm tiie-k

D(ex) "“(m + j/ C)[ R

< D(ex) 7e(m + j/e) [ -0, m-oo, (24)

]1(('"} el - 2ex)

l--cx
uniformly for all k € 4,(x), because

cxX

0 < x <min(b, 1/(2¢)) >0 < < ]

From (2.3) and (2.4) we receive (2.2). @

Step 1. For O <x < min(b, 1/(2¢)) the asymptotic relation

( ”k ik I [ —n Kk 2
(I) ), - :mﬁ‘r—————::_v ex —  f———x
N e v 2nx(1 —cx)n P 2x(1 ~ cx) ( n )

nosoo,  (2.5)

holds uniformly for all k € 4, (x). where { < « < 1.
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Proof of Step . Using Stirling formula we obtain from (2.2)

( /\') n(n—c) 5::7 (k_ I)C) (l Acx)n,’(' rkxk

(pll\) ) k
B I'(njc+ 1)
 I(nje— (k- 1))k!
N (H/C + 1)"""* I/Z(l _cx)n cfl\x/\

- kk« I/Z(n/c_ (k— 1))r1/<‘—k—v l,/Z\/E
ontc (n+e)(t—ex) 1" 4 x(n+c))*
\/~\’k(n—kc )[ n+c - ke J [ k_l

1 — (n-kerve X k
1 [ n( cr)J [nr} Cnew. (26)

(1 —cx)™e 5 x*

\/ 7/ x(1 —cx) k
. —'W,,(X)
uniformly for k € 4, (x).
Now
n—kc k
—log W ,(x — k)1 — |+ kI —_—
= e [ v 4]
:vn—(lvcx)[lm ¢ (i-*x)Jlog[I— < (ir)J
c l—cx \n l—cx \ n
1 /k 1 7k
+nx[l+~‘(—~x)jlog[1+—(i~x)!. (2.7}
x \n , x \n
By Taylor formula for |uj < 1
log(l + u)=u : 2+] i u 1uz(l%—su)
u)= - —_ 3 = —_—— s
& 2 T O T ou) 2

0 < @ < 1. where ¢ remains bounded as u — 0. Substituting in (2.7)

—log W, (x)=— (1 —cx) [I N (i_\) J

I—cx \n

= (‘)7_T()_T—T<_)J
+n.\‘[1 +fl€(f—;—x)
o) (o) el

_ n k. . 2 o
B 2x(1 — ¢x) ( n ) Wn ), 1 - 00,
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uniformly for k € 4 (x). Therefore we have uniformly for all k € 4,(x)

—n (_IL,,, '\-)k l‘ 1 — O0. (28)

W ()= "
(= |55 5

Relation (2.5) now follows by (2.6) and (2.8). @
An application of Theorem 2.1 completes the proof.

(b) Part (b) of Theorem 2.2 was already proved by Rathore |5:
p. 53 .| (cf. Lorentz |4; pp. 15-17]).

(¢) For the sequence @ ,(x)=-exp(—nx) the result of part (c) was
proved by Rathore |5; p.40f.].

For the sequence @,(x) = (1 — cx)"“ (c < 0) the result of part (c) can be
proved in the same way as Step II in the proof of part (a). §

Remark. Moreover, by means of Lemma 1.4 we can prove the following
completion of Theorem 2.2:

Let (@,),- be a sequence of functions, which satisfies the conditions of
Definition 1.1 on an interval |0, b| with ¢ € 7, then the asymptotic extension

135 2m— 1)x(l —cx))

m

T((t—x)"x) = p

™

_I((2m + 1)/2) [Zx(l — x)
n

V&
holds for all x€ [0, b| and all m € I\

3. THE LocAL NikoLsKIl CONSTANTS

Let X, X be two subsets of I2 with X < X. For a sequence (L,),c,, of
operators, defined on the domain C,,(X) into the domain C(X). the error in
approximating a subclass 4 < C,,(X) by L, at a given point x is defined to
be

AL, A x) =sup L (fix)— f(x)] (3.1)

fed
If there exists a numerical sequence ¥, (L;4)— 0 as n — co. such that

AL A x)=C(L;A:x) VY, (L:A)+o (VP (L:A)). n—-oc. (3.2)

ne

where C(L:A:x)} is a positive number, then C(L:A4:x) is called the local
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Nikolskii constant corresponding to the order ¥, (L; A) of approximation of
the class A4, at the point x, by the operator L,.
In this section 4 is always one of the following three classes

Lip(C(X):a: 1) = {f € C(X): | f(x + h) — f(x)| < |h[",
Vx, x +he X}, O<ag
Lip*(C(X): a:2) =S € C(X): | f(x + h) = 2f(x) + flx — h)
L2h1° VX, x + hE X, O<ag2:

WINCX)ia; 1) = {f € CHX): f* € Lip(C(X); a: 1)}, O<ag 1.

Moreover we want to study the approximation of higher order. Thus we
consider the quantity
| q‘ (k) X
AL,z aiqg:x) = sup ]L,,(f(f)* Y ! ks )
k0 *

feWCiX)iasl)

(t—x)* 1 x)
with

WC(X) @ 1) = {f € COX): /) € Lip(C(X ) 1)},
0<a<1.gEN.

Now, using estimation (2.1) and the results of |3; Theorems 2.3-2.4], we get
(a) for the sequence (7,)

nHem
Order of Local
approximation Nikolskii constant
AT, Lip(C|0, 00): a, 1) x), - I'((a + 1)/2) -
) ) n —_— 2x(] —ex))"
0<ug \/7-[
AT, Lip*(Cl0. o0): a: 2): x), , .
0<a? '
AT, W(CI0. o0): s 1)), b X
O<a<1 "
A1) o 1
NT, W CI0, 00): 15 1) x), n 7)«‘(1 — cx)
AT, as g x). s I'f{la+g+1)2 .
(T, @i g ) o (@t g+ 1) o1 e
geven, 0 <a< | (1+a)qﬁ
AT, aiq; x) g e o
godd. 0 <a <1 :
AT, 11 g: x), g 2 (g + 2)/2)

2x(1 — ex))@ 12
! odd Wy s e
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{b) for the sequence (7)), .,
Order of Local

approximation Nikolskii constant

AT, Lip(CG ) 1) x) Il + 1)/2)

no —— 22X eyt
0wl )
MT, Lip*(Cli ) az 2): %) T+ 1)2)
) n - e LI PAVE AN
0<as? T
AT, WO 1w 1) X, s 20 e+ 2)/2) o
o ot e PAU R S DI
0wl VT
AT, g x) Tla v g+ 1)°2) o
‘ ! TR L e RPN
geven, 0 < < | Hra,yr
AT, g x) 2 e cqg 1y .
( / ot Lt —) a0l exp'
godd. 0 <« (L +a), v

where (1 +a), =11} | («+ k)

Remark. From Theorem 2.2 we have learned that the above results are
valid

(a) for O < x < min(b.1/(2¢c)), if the sequence (@), . satisfies all
conditions of Definition 1.1 on an interval |0, b| with ¢ > O, (in particular for
O<x<liife=1, @ (x)=(1—-x)");

(b) for all x> 0. if @, (x)=exp(-—nx) (¢c=0) or @, (x)= (] - cx)"*
(c < 0).
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